M1.B

M2. (a) Pentan-2-one
ONLY but ignore absence of hyphens
(b) Functional group (isomerism)

Both words needed
(c) (i)

Award credit provided it is obvious that the candidate is drawing the Z / cis isomer
The group needs to be CHOHCH_{3} but do not penalise poor $\mathrm{C}-\mathrm{C}$ bonds or absence of brackets around OH
Trigonal planar structure not essential
(ii) Restricted rotation (about the $\mathrm{C}=\mathrm{C}$)

OR
No (free) rotation (about the $\mathrm{C}=\mathrm{C}$)
(d)

M1 Tollens' (reagent)	M1 Fehling's (solution) / Benedict's
(Credit ammoniacal silver nitrate OR	(Penalise $\mathrm{Cu}^{2+}(\mathrm{aq})$ or CuSO
a description of making Tollens') mark	
(Do not credit $\mathrm{Ag}^{+}, \mathrm{AgNO}_{3}$ or	$\mathrm{M2}$ and M3)
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]$or 'the silver mirror test"	

on their own, but mark M2 and M3)	
M2 silver mirror OR black solid or black precipitate	M2 $\underline{\text { Red solid/precipitate }}$ (Credit orange or brown solid)
M3 (stays) colourless	M3 (stays) blue
OR	OR
no (observed) change / no reaction	no (observed) change / no reaction

If $\mathbf{M 1}$ is blank $C E=0$, for the clip
Check the partial reagents listed and if M1 has a totally incorrect reagent, CE $=0$ for the clip
Allow the following alternatives
M1 (acidified) potassium dichromate(VI) (solution); mark on from incomplete formulae or incorrect oxidation state M2 (turns) green
M3 (stays) orange / no (observed) change / no reaction
OR
M1 (acidified) potassium manganate(VII) (solution);
mark on from incomplete formulae or incorrect oxidation state
M2 (turns) colourless
M3 (stays) purple / no (observed) change / no reaction In all cases for M3
Ignore "nothing (happens)"
Ignore "no observation"

(e) (i) Spectrum is for Isomer 1

or named or correctly identified
The explanation marks in (e)(ii) depend on correctly identifying Isomer 1.
The identification should be unambiguous but candidates should not be penalised for an imperfect or incomplete name. They may say "the alcohol" or the "alkene" or the "E isomer"
(ii) If Isomer 1 is correctly identified, award any two from

- (Strong / broad) absorption / peak in the range

Page 3

3230 to $3550 \mathrm{~cm}^{-1}$ or specified value in this range or marked correctly on spectrum and
(characteristic absorption / peak for) $\underline{\mathrm{OH}}$ group /alcohol group

- No absorption / peak in range 1680 to $1750 \mathrm{~cm}^{-1}$ or absence marked correctly on spectrum and (No absorption / peak for a) $\mathbf{C = O}$ group / carbonyl group / carbon-oxygen double bond
- Absorption / peak in the range 1620 to $1680 \mathrm{~cm}^{-1}$ or specified value in this range or marked correctly on spectrum

and

(characteristic absorption / peak for) $\underline{\mathbf{C}=\mathbf{C}}$ group
/ alkene / carbon-carbon double bond
If 6(e)(i) is incorrect or blank, $C E=0$
Allow the words "dip" OR "spike" OR "trough" OR "Iow transmittance" as alternatives for absorption.
Ignore reference to other absorptions e.g. C-H, C-O

M3. (a) $\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{OR} \mathrm{Mg}(\mathrm{OH})_{2}$ Ignore name
Could be ionic
(b) NaF or sodium fluoride

OR
NaCl or sodium chloride
Either formula or name can score
Do not penalise the spelling "fluoride"
When both formula and name are written,

- penalise contradictions
- if the attempt at the correct formula is incorrect, ignore it and credit correct name for the mark unless contradictory
- if the attempt at the correct name is incorrect, ignore it and credit correct formula for the mark unless contradictory
(c) NaClO OR NaOCl

Ignore name (even when incorrect)
The correct formula must be clearly identified if an equation is written
(d) $\mathrm{Br}_{2}(\mathrm{ONLY})$

Only the correct formula scores;
penalise lower case " b ", penalise upper case " R ", penalise superscript
Ignore name
The correct formula must be clearly identified if an equation is written

1
(e) M1 S OR S8 $\mathrm{OR} \mathrm{S}_{2}$

M2 I_{2} (ONLY)
Ignore names
penalise lower case " i " for iodine,
penalise superscripted numbers
Mark independently
The correct formula must be clearly identified in each case if an equation is written
(f) (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

Structure of but-1-ene. Ignore name
Credit "sticks" for C-H bonds
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Structure of butan-1-ol. Ignore name
Credit "sticks" for C-H bonds

(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Structure of propane. Ignore name Ignore calculations and molecular formula
Credit "sticks" for C-H bonds
Ignore the molecular ion
(iv) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$ OR C $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}_{\text {, }}$

Structure of bromoethane.
Ignore name and structure of nitrile
Credit "sticks" for C-H bonds
1

M4.C

M5.(a) Position(al) (isomerism)

M1 must show an arrow from the double bond towards the H atom of the $\mathrm{H}-\mathrm{Br}$ molecule

M1 Ignore partial negative charge on the double bond.

M2 must show the breaking of the $\mathrm{H}-\mathrm{Br}$ bond.
M2 Penalise partial charges on $\mathrm{H}-\mathrm{Br}$ bond if wrong way and penalise formal charges

M3 is for the structure of the secondary carbocation.
Penalise M3 if there is a bond drawn to the positive charge
M4 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged carbon atom of either a primary
or secondary carbocation.
Penalise once only in any part of the mechanism for a line and two dots to show a bond
Maximum any 3 of 4 marks for wrong reactant or primary carbocation.
If Br_{2} is used, maximum 2 marks for their mechanism
Do not penalise the use of "sticks"
NB The arrows here are double-headed

4
(c)

M1 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to a correct H atom

Penalise M1 if covalent KOH
M2 must show an arrow from a $\mathrm{C}-\mathrm{H}$ bond adjacent to the $\mathrm{C}-\mathrm{Br}$ bond towards the appropriate $\mathrm{C}-\mathrm{C}$ bond. Only award if an arrow is shown attacking the H atom of an adjacent C-H (in M1)

M3 is independent provided it is from their original molecule.
Penalise M3 for formal charge on C of the C-Br or incorrect
partial charges on $\mathrm{C}-\mathrm{Br}$
Penalise M3 if an extra arrow is drawn from the Br of the $C-\mathrm{Br}$ bond to, for example, K^{+}
Ignore other partial charges
Penalise once only in any part of the mechanism for a line and two dots to show a bond.
Maximum any 2 of 3 marks for wrong reactant or wrong product(if shown) or a mechanism that leads to but-1-ene

Accept the correct use of "sticks" for the molecule except for the C-H being attacked

Award full marks for an E1 mechanism in which M2 is on the correct carbocation.

NB The arrows here are double-headed

M6.
(a) (i)

Penalise one mark from their total if half-headed arrows are used
Penalise M3 for formal charge on C of the C-Br or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$
Ignore other partial charges

M1 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to the correct H atom

Penalise once only in any part of the mechanism for a line and two dots to show a bond.

M2 must show an arrow from the correct $\mathrm{C}-\mathrm{H}$ bond to the correct $\mathrm{C}-\mathrm{C}$ bond. Only award if an arrow is shown attacking the H atom of the correct $\mathrm{C}-\mathrm{H}$ bond in M1

M3 is independent but CE=0 if nucleophilic substitution
N.B these are double-headed arrows

M1 E isomer

M2 Z isomer

Page 8

> Award 1 mark if both correct stereoisomers but in the wrong places
> Accept no other alkenes.
> Be reasonably lenient on the bonds to ethyl (or to $\mathrm{CH}_{2} \mathrm{CH}_{3}$) since the question is about E and Z positions but penalise once only if connection is clearly to the CH_{3} of $\mathrm{CH}_{2} \mathrm{CH}_{3}$
> Accept linear structures
(iii) M1 (Compounds / molecules with) the same structural formula Penalise M1 if "same structure"

M2 with atoms/bonds/groups arranged differently in space Ignore references to "same molecular formula" or "same empirical formula" or any reference to "displayed formula"

OR
atoms/bonds/groups that have different spatial arrangements / different orientation.
Mark independently

$$
2
$$

M1must show an arrow from the double bond towards the H atom of the $\mathrm{H}-\mathrm{O}$ bond OR HO on a compound with molecular formula for $\mathrm{H}_{2} \mathrm{SO}_{4}$

M1 could be to an $\mathrm{H}+$ ion and M 2 an independent $\mathrm{O}-\mathrm{H}$ bond break on a compound with molecular formula for $\mathrm{H}_{2} \mathrm{SO}_{4}$

M1 Ignore partial negative charge on the double bond.
M2 must show the breaking of the $\mathrm{O}-\mathrm{H}$ bond.
M2 Penalise partial charges on $\mathrm{O}-\mathrm{H}$ bond if wrong way and penalise formal charges
In M2 do not penalise incorrect structures for $\mathrm{H}_{2} \mathrm{SO}_{4}$
M3 is for the structure of the carbocation.
M4 must show an arrow from the lone pair of electrons on the correct oxygen of the negatively charged ion towards a correct (positively charged) carbon atom.

M4 NOT HSO ${ }_{4}^{-}$
For M4, credit as shown or $\mathrm{OSO}_{3} \mathrm{H}$ ONLY with the negative
charge anywhere on this ion
OR correctly drawn out with the negative charge placed correctly on oxygen
Penalise once only in any part of the mechanism for a line and two dots to show a bond

NB The arrows here are double-headed

Max 3 of any 4 marks for wrong organic reactant or wrong organic product (if shown)
Accept the correct use of "sticks"

M7.(a) (i) Structure of (Z)-but-2-enenitrile with or without either or both of the CH_{3} and the CN groups displayed

Penalise C-NC
Do not penalise $\mathrm{C}-\mathrm{H}_{3} \mathrm{C}$ Ignore bond angles.
(ii) Restricted rotation / no (free) rotation about the double bond / about the $C=C$ OR does not rotate (about the double bond)

Must use the word rotate / rotation.
(b) Repeating unit of polyalkene

OR

All the bonds relevant to the unit must be drawn out including those on either side of the unit. There is no need to expand either the CH_{3} or the CN

> Penalise C-NC
> Penalise "sticks".
> Ignore brackets.
> Penalise " $n "$
(c) Feature 1

Absorption / peak in the range $\mathbf{2 2 2 0}$ to $\mathbf{2 2 6 0} \mathrm{cm}^{-1}$ or specified value in this
range or marked correctly on spectrum
and
(characteristic absorption / peak for) C三N / CN group / nitrile / cyanide group
Allow the words "dip" OR "spike" OR "trough" OR "low transmittance" as alternatives for absorption.
Allow a peak at $2200 \mathrm{~cm}^{-1}$ to $2220 \mathrm{~cm}^{-1}$ in this case.

Feature 2

Absorption / peak in the range 1620 to $1680 \mathrm{~cm}^{-1}$ or specified value in this range or marked correctly on spectrum
and
(characteristic absorption / peak for) $\underline{\mathbf{C = C}}$ group / alkene / carbon-carbon double bond

Ignore reference to other absorptions eg $\mathrm{C}-\mathrm{H}$
Either order.

